Graphs of Small Rank-width are Pivot-minors of Graphs of Small Tree-width
نویسندگان
چکیده
We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors of trees and bipartite graphs of linear rank-width at most 1 are precisely pivot-minors of paths.
منابع مشابه
Graphs of Small Rank-width Are Pivot-minors of Graphs of Small Tree-width
We prove that every graph of rank-width k is a pivot-minor of a graph of tree-width at most 2k. We also prove that graphs of rank-width at most 1, equivalently distance-hereditary graphs, are exactly vertex-minors of trees, and graphs of linear rank-width at most 1 are precisely vertex-minors of paths. In addition, we show that bipartite graphs of rank-width at most 1 are exactly pivot-minors o...
متن کاملTree-depth and Vertex-minors
In a recent paper [6], Kwon and Oum claim that every graph of bounded rank-width is a pivot-minor of a graph of bounded tree-width (while the converse has been known true already before). We study the analogous questions for “depth” parameters of graphs, namely for the tree-depth and related new shrub-depth. We show that shrub-depth is monotone under taking vertex-minors, and that every graph c...
متن کاملAn Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width
We provide a doubly exponential upper bound in p on the size of forbidden pivot-minors for symmetric or skew-symmetric matrices over a fixed finite field F of linear rank-width at most p. As a corollary, we obtain a doubly exponential upper bound in p on the size of forbidden vertex-minors for graphs of linear rank-width at most p. This solves an open question raised by Jeong, Kwon, and Oum [Ex...
متن کاملA Note on Graphs of Linear Rank-Width 1
We prove that a connected graph has linear rank-width 1 if and only if it is a distance-hereditary graph and its split decomposition tree is a path. An immediate consequence is that one can decide in linear time whether a graph has linear rank-width at most 1, and give an obstruction if not. Other immediate consequences are several characterisations of graphs of linear rankwidth 1. In particula...
متن کاملRank-width and vertex-minors
The rank-width is a graph parameter related in terms of fixed functions to cliquewidth but more tractable. Clique-width has nice algorithmic properties, but no good “minor” relation is known analogous to graph minor embedding for tree-width. In this paper, we discuss the vertex-minor relation of graphs and its connection with rank-width. We prove a relationship between vertex-minors of bipartit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 168 شماره
صفحات -
تاریخ انتشار 2014